طراحی و ارزیابی سامانه اتوماسیون کنترل اقلیم گلخانه‌ای

حسن طهماسبی.1 جعفر مساح 2، محمدرضا روزبان3

دانشجوی سابق کارشناسی ارشد، گروه قدرت کشاورزی، پردیس بوریج، دانشگاه تهران.
دانشیار، گروه قدرت کشاورزی، پردیس بوریج، دانشگاه تهران.
استادیار، گروه پایداری، پردیس بوریج، دانشگاه تهران
ایمیل نویسه‌ند: jmassah@ut.ac.ir

چکیده

استفاده از روش‌های کاشش مصرف انرژی در گلخانه‌ها از جمله کاشش تلفات حرارتی و به‌هم‌بود برخورد سیستم‌های گرمایشی، تحت کننده و آبیاری می‌تواند مصرف انرژی برای تولید هر میلیون را تا چندین برابر کاهش دهد. در این تحقیق، یک سیستم اتوماسیون کنترل اقلیم گلخانه، طراحی و ساخته شد. این سیستم شامل ایستگاه‌های فرمان و اندازه‌گیری بود. ایستگاه فرمان شامل HMI و ایستگاه اندازه‌گیری شامل سنسور رطوبت، سنسور نور، و هشت سنسور حرارت بود. ایستگاه اندازه‌گیری شرایط اقلیم گلخانه را دریافت می‌کرد و سپس آنها را برای ایستگاه فرمان ارسال می‌کرد. در این پژوهش، تاثیر سامانه اتوماسیون کنترل اقلیم گلخانه ساخته شده، بر ویژگی‌های کیفی و کیفیت سرمایه گذاری در گل را شاخص برده به نمادهای "انگلینا"، "سامورایی" و "ورد وان" با سامانه شهر، مورد مقایسه قرار گرفت. همچنین، مصرف انرژی در هر دو سامانه، مورد تجزیه و تحلیل قرار گرفت. بر اساس نتایج بدست آمده، شاخص کیفیت و وزن شاخصه‌های سرمایه در هر سه مکان مورد ذکر، در محصولات تولید شده تحت سامانه اتوماسیون نسبت به سامانه شهر به‌بیشتر یافته. اما در هر سه مکان گیاه تراست، مقدار میان‌داری بین ویژگی‌های طول و میزان ساله، همانند ساله، قلف ساله، تعداد شاخه‌ها، های گیاهی و کور، طول میانگین گیاه و عمر گل‌های مخصوص سامانه مورد مقایسه، مشاهده نمی‌شود. نتایج بدست‌آمده نشان دهنده کاهش میزان مصرف انرژی در گلخانه تحت سامانه اتوماسیون کنترل اقلیم نسبت به سامانه شهر به‌سبب نتیجه 2.12٪ بود.

واژگان کلیدی: کنترل اقلیم گلخانه، کارایی مصرف انرژی، ویژگی‌های پردازشندی، گل رز

1- مقدمه

امروز، بخش کشاورزی به منظور پاسخگویی به نیاز روز افزون غذا برای جمعیت رو به رشد کره زمین و فراهم کردن مواد غذایی کافی و مناسب به میزان طبیعی حدود و اثرات سوء ناشی از عدم استفاده بهینه از منابع مختلف انرژی بر سلامتی انسان و محیط زیست، لزوم بررسی و بازگردی در الگوهای مصرف انرژی زیادی وابسته به مصرف انرژی می‌باشد. توجه به منابع طبیعی محدود و اثرات سوء ناشی از عدم استفاده به‌ینه از منابع مختلف انرژی بر سلامتی انسان و محیط زیست، لزوم بررسی و بازگردی در الگوهای مصرف انرژی
سیستم کنترل کامپیوتری هوشمند را برای کنترل شرایط محیطی گلخانه طراحی کرد. این پارامترهای تظییر دمای، رطوبت و همچنین میزان مواد تغذیه‌ای محلول در آب ایعبای را از دستگیری و کنترل کرد. هدف از این تحقیق طراحی و ساخت سیستم اتوماتیک کنترل اقیانوس گلخانهای بود که سه پارامتر دما، رطوبت و شدت نور گلخانه را انتزاعی کنترل و ماتریس می‌کرد. همچنین در این تحقیق نمونه‌گیری این سیستم بر ویژگی‌های کمی و کیفی سه رقمی گل رز و مصرف انرژی گلخانه مورد ارزیابی قرار گرفت.

2- مواد و روش‌ها

برای ایجاد یک سیستم نظارتی و کنترلی قابل برپا سازی و ریزی و انعطاف‌پذیر، الگوریتم‌های کنترلی در دستگاه‌های شناسایی پیامدهای شدید در این سیستم کنترل، برای کنترل هر منطقه呵ل دما، رطوبت و شدت نور، ابتدا متواری مربوط شناسایی و اندوزه گذاری، و سپس نتیجه به کنترل کندن امکان‌آمیزی می‌شود. کنترل کندنی میزان غلیظات مورد نیاز در سیستم را محاسبه و دستور نرم‌افزار مایکروسافت ویرایش‌بسته‌ای در هر مدت، هر چه زمان‌بندی ویژگی‌های عملی گلخانه محلول صادق می‌گردد و در سطح مصرف انرژی گلخانه، یکی از مهم‌ترین عوامل بر رشد گیاهان گلخانه‌ای و نیز کسانی از هزینه‌های جاری این گلخانه است. (Sun, 1992) در مورد سیستم‌های کنترل کندنی در مرکز‌های Sun همچنین عمل کنترل‌ها اجرای اصلی (HMI) ساخته‌سازی مناسب سیستم‌های کنترل را تشکیل می‌دهند. مراحل این پروGRAM نسبت به ساخته‌سازی شامل: نصب حسگرها، ارتباط‌های سختافزاری با تنظیم برق، پیاده‌سازی استخراج فرمان به مسئول تهیه نمودار بر سیستم و همچنین اجرای کرومین‌های کنترلی بود.

تأثیر گلخانه‌های اتوماتیک به سال‌های اول 1970، میلادی بر پریگردد ولی امروزه با توسعه ایبرادهای دقیق، کاربرد این نوع گلخانه‌ها کاملاً تجاری شده، و در سطوح مختلف عرضه می‌شوند. تأمین گرداهای صورت نیاز هر گلخانه، یکی از مهم‌ترین عوامل بر رشد گیاهان گلخانه‌ای و نیز کسانی از هزینه‌های جاری این گلخانه است. (Nasirian, 2006).

Hatirli et al., (2005) که تاثیر شرایط محیطی گلخانه طراحی کرد. این پارامترهای تظییر دمای، رطوبت و میزان مواد تغذیه‌ای محلول در آب ایعبای را از دستگیری و کنترل کرد. هدف از این تحقیق طراحی و ساخت سیستم

Akbari and Sharif, (2008) با توجه به حملات آب و انتشار گازهای گلخانه‌ای ناشی از مصرف بیروه سوخت‌های فسیلی، تمام ناشی‌ها بر این است که مصرف انرژی چه اکثر کشورهای پیشرفته و حتی در حال توسعه، افزایش وارد کرده‌اند سیستم کشاورزی خود از نظر مصرف انرژی

Lipov, (1992)
Fig. 1. Block diagram of system of greenhouse climate control

(SHT21, Sensirion, USA)
(TEPT5700, Vishay, Lithuania)
سالن را به سیستم می‌داد و اطلاعات مربوط به دما را توسط کابل RS485 به دستگاه پرداخته مرکزی منتقل می‌کرد. همچنین امکان تشخیص رطوبت و شدت نور در هر نقطه از سالن را فراهم می‌کرد. سیگنال‌های مربوط به حسگر رطوبت و شدت نور توسط کابل ۱۲۵/۰۰۰ به‌همراه پرداخته می‌شد.

(شکل ۲) ایستگاه ارتباط‌گیری نصب شده در گلخانه

شکل ۳. ایستگاه فرمان نصب شده در گلخانه

شکل ۳. Command station in greenhouse

گلخانه دارای دو سالن یکسان به مساحت کل ۱۶۰۰ مترمربع در مجاور یکدیگر بود. هر سالن دارای پنجره فن با قطر ۱۲۰ سانتی‌متر، سیستم مهاباش (در ارتفاع ۳۸۰ سانتی‌متر از سطح زمین)، و سیستم پد (دارای سطح آبی‌گیری به ارتفاع ۱/۱۵ سانتی‌متر و طول ۲۵ متر) بود. هر دو بمب ارسان جهت مخلوط کردن پوشاک‌ها ۱۵ litt/s بود. آب‌سازی به وسیله بمب سانتریفهوژ در صبح و عصر به سمت ۲ ساعت انجام می‌گرفت. بستر کشت رژه‌ای مخلوط Perlite و Cocopeat گل‌روی نوار در ۲۵ سانتی‌متر و فاصله عرضی آنها ۷۰/۵ سانتی‌متر بود.

شکل ۴-۲ ایستگاه پردازش اطلاعات

شکل ۴-۲. Measurement station in greenhouse

دستگاه پردازته مرکزی اطلاعات، یکی از اجزای تشکیل دهنده ایستگاه پردازش و فرمان می‌باشد. علت استفاده از این دستگاه، دارا بودن امکاناتی از جمله Sample Rate بامشیت اتصال آسان به سیستم کامپیوتر و راحت بودن برنامه نویسی آن می‌باشد. این ایستگاه، به معنی سهولت دسترسی به مدار قدرت، در کنار تابلو برق گلخانه نصب گردید (شکل ۳). ایستگاه فرمان نصب شده در گلخانه. دستگاه مورد نظر به مدته ذره متوالی تولید گل (۲۷ و ۴۱ روز) در گلخانه‌ای مجهز به سیستم هیدرولوژیک در شهرستان مرودشت واقع در ۳۰ کیلومتری شهرستان شیراز، نصب شد. کشت گلخانه مورد نظر، گل رز شاخه بیده ارقام تجاری "آنجیلا"، "سامورایی" و "رود وان" بود.

ج. Bottom break

د. Fresh weight
سامانه اتوماسیون اقلیم گل‌خانه‌ای در یکی از سال‌های کشت
شده، نصب شده بود و سیستم‌ها را تعریف، تنظیم و
پدیدار نموده سیب‌های را کنترل می‌کرد. سالن شاهد به
صوت هدایت و با استفاده از تیرول تاسیسات را با تجربه
کنترل می‌شد. مقایسه صفات در دو سالن گل‌خانه در
قالب یک آزمایش فاکتوریال 1 باره در یک بروک کاملاً
تصادف قبلاً به سه تکرار انجام گرفت. برای مقایسه
میانگین‌ها از آزمون دانک در سطح 0.05 استفاده
شد.
همچنین، پس از اندرازه‌گیری مقادیر شاخص‌های کیفی و
کیفی گل‌ها و شاخص بیدری، معنی‌داری تغییرات
صفات مورد ارزیابی در سالن تحت سامانه اتوماسیون
SPSS اقلیم و شاخص روزه سه روز گل در نرمافزار
16.0 مورد تجزیه و تحلیل قرار گرفت.

2- ارزیابی صفای کمی و کیفی محصول
صفات کمی نظیر قطر ساقه به وسیله کولیس با
دقت 0/02 میلی‌متر، و طول شاخه گل به وسیله متر
با دقت 0/01 میلی‌متر اندازه‌گیری شد. وزن شاخها
توزع توزیعی دیجیتال با دقت 0/01 گرم اندازه‌گیری
شد. جهت تعیین مساحت سطح برگ‌های گل رز از
کاغذ‌های شطرنجی میلی‌متری استفاده گردید. برای
محاسبه عمر گل‌های گل‌های پس از برداشت از نظر ارتفاع
همسان گردیدن و درون ظرف‌های آب تغییراتی شدند.
دمای محيط 20 ± 5 درجه سانتی‌گراد و رطوبت محيط
5/40% بود و در رو به روز گل‌ها به چشم عملاً مورد
ارزیابی قرار گرفتند. شرایط زیستی گل‌گونه‌ها به
عنوان شاخص پری و استفاده روزه تا پیش‌گیری گل‌گونه‌ها
به عنوان عمر گل‌های گل در نظر گرفته شد.

(Nazari et al., 2009)

همانطور که اشاره شد گل‌خانه‌های هیدروپونیک مورد
نظر از دو سالن مجاور هم تشکیل شده بود. سالن‌های
کشت شده از نظر ساخت و ساز، تعداد فناوری سیستم پرده
سایبان و سیستم رطوبت‌ساز، کاملاً یکسان بودند.

3. Blindness shoot
4. Internodes
5. Vase life
جهت ارزیابی کارایی سامانه اتوماسیون اقلیم، صفات طول ساله گلدهنه، قطر ساله گلدهنه، تعداد ساله گلدهنه، ارزش میانگین روزن تازه شاخه گلدهنه، شاخک کیفیت گل، سطح برگ ساله گلدهنه و عمر گل‌گاجی در گلخانه تحت سامانه اتوماسیون اقلیم و گلخانه شاهد مورد مقایسه قرار گرفت و قابلیت سامانه در کنترل محیط و ارتفاع محصول از لحاظ کمی و کیفی در دو دوره برداشت متوالی 37 و 41 روزه مورد ارزیابی قرار گرفت. در طول دوره آزمایش که مرادیم 1392 بود، میانگین دمای روز و شب به ترتیب 26 و 19 درجه سانتی‌گراد، رطوبت نسبی روز و شب به ترتیب 85 و 68٪ و شدت نور 36/40 لوم بود.

3- نتایج گیری

در طول آزمایش در بخش‌های مختلف گلخانه، دما و رطوبت یکسان بود که این نشان دهنده عملکرد خوب سامانه اتوماسیون اقلیم بود. به علت نباید گیاه به نور خورشید برای انجمام عمل فنونست، نور تمام محيط گلخانه توسط این سامانه کنترل شد. این نوع گیاهان سالن تحت سامانه کنترل اقلیمی، تحت شرایط محيطي بهبود رشد کرده بودند. برگ‌های آنها سالم و شادابی مناسبی را داشتند. همچنین در کنار فنها در گلخانه شاهد، گل‌ها از شادابی خوبی برخوردار بودند.

نتایج تجزیه واریانس مقایسه مورد ارزیابی در برداشت‌های اول و دوم به ترتیب در جداول 1 و 2 اروره شده است. در جدول تجزیه واریانس پارامتر A فاکتور سامانه گلخانه (کنترل اقلیم و شاهد) و پارامتر
Table 1. Analysis of variance for the evaluated traits in the first harvest

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>Mean Squares</th>
<th>F-value</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AxB</td>
<td>0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>0.0001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Analysis of variance for the evaluated traits in the second harvest

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>Mean Squares</th>
<th>F-value</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AxB</td>
<td>0.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>0.0004</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Analysis of variance for the energy consumption

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>Mean Squares</th>
<th>F-value</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F&P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0.005</td>
<td>3.58</td>
<td>0.05</td>
</tr>
<tr>
<td>Error</td>
<td>0.001</td>
<td>1.36</td>
<td>0.27</td>
</tr>
</tbody>
</table>

C.V.

Design and Evaluation of Automation System of Greenhouse Climate Control

H. Tahmasebi 1, J. Massah2* and M. R. Roozban 3

1Former Graduate Student, Department of Agrotechnology, College of Aburaihan, University of Tehran, Iran

2Associate Professor, Department of Agrotechnology, College of Aburaihan, University of Tehran, Iran

3Assistant Professor, Department of Horticulture, College of Aburaihan, University of Tehran, Iran

*Corresponding Author Email: jmassah@ut.ac.ir

Received: July 01, 2015 Accepted: November 16, 2015

Abstract

The use of methods to reduce energy consumption of greenhouses such as reduced heat losses, and improved efficiency of heating, cooling and irrigation systems can be reduced the energy consumption for the production of any crop to several times. In the present research, an automated system for climate control of greenhouse was designed and built. This system was consisted of control and measurement stations. Control unit was consists of a HMI device; and measurement station formed of one humidity, one light and 8 temperature sensors. Climate conditions of the greenhouse is received by measurement station, and sent to the control one. In the present research, impacts of the built automated system for climate control of greenhouse on the qualitative and quantitative traits of three cut-roses cultivars including 'Angelina', 'Samurai' and 'Red One' were compared with the control system. Also, energy consumption in both systems were calculated and analyzed, too. Based on the results, quality index and shoot weight of the cut-roses were improved under the automated system than control one. But there was not found any differences in traits of flowering stem length and number, stem diameter, number of lateral and blind shoots, internodes length and vase-life, between crops of two system compared. The results indicated also a reduction in energy consumption under the automated climate management system than control one, for 12%.

Keywords: greenhouse climate control, energy consumption efficiency, marketability traits, Rose flower.