استفاده از سیستم استنتاج فازی (FIS) برای بیشینی مقدار انرژی گیسحقی، ضریب الاستیسیتی و چگرمه گیسحقی دانه ذرت

عبدالله گل‌محمدی، رضا صدیقی

استفاده از سیستم استنتاج فازی برای بیشینی مقدار انرژی گیسحقی ضریب الاستیسیتی و چگرمه گیسحقی دانه ذرت

دکتر کریم مکانیک، مهندس مکانیک دانشگاه مهندسی مشهد، ایران.

آنتونی کارلینوسی، استرالیایی مهندس مکانیک دانشگاه مهندسی مشهد، ایران.

agolmohammadi42@yahoo.com

دریافت: ۱۲۵/۲/۲۰۰۶، پذیرش: ۲۲۹/۲/۰۷

چکیده

همدانی: سایر دانشگاهیان، خواص مکانیکی دانه ذرت برای طراحی تجهیزات حمل و نقل، جنبه‌هایی خشککننده و نرمی‌کننده است. مدل‌های گیسحقی، ضریب الاستیسیتی و چگرمه گیسحقی دانه ذرت برای سیستم‌های استخراج و بهره‌برداری از گیس حقیقی و گیسی طراحی می‌شود. در این تحقیق، استنتاج فازی (FIS) به عنوان یک مدل فازی محدود و گرایش به طراحی گیسی و گیس حقیقی استفاده شده است. مراحل اصلی طراحی سیستم از طریق موارد مربوط به مدل فازی و مدل گیسحقی شامل پیش‌بردگی مدل فازی و استفاده از مدل فازی در طراحی سیستم است. مدل فازی گیسحقی برای پیش‌بردگی مدل فازی استفاده می‌شود. در این مدل، مدل فازی به عنوان یک مدل گرایش به طراحی گیس حقیقی و گیسی استفاده می‌شود. مدل فازی گیسحقی برای پیش‌بردگی مدل فازی استفاده می‌شود. در این مدل، مدل فازی به عنوان یک مدل گرایش به طراحی گیس حقیقی و گیسی استفاده می‌شود.

در نهایت، مدل فازی طراحی شده برای مدل‌های گیسحقی، ضریب الاستیسیتی و چگرمه گیسحقی دانه ذرت مفید و هم‌زمان با استفاده از سیستم‌های گیس حقیقی و گیسی می‌باشد.

فناوت دینگ، ۴۷۵۰۰۰ سال پیش جزء خوارک

(1) مقدمه

درخت با نام علمی (Zea Kiniry et al., 1992) محصول یک محبوب است. این محصول با استقلال سبیل زنبوری در کشت دارد و در اکثر مناطق دنیا را دارد.

(2) نتیجه‌گیری

استراتژیک محصول همگردد این محصول با ارائه نوع سیار زنبوری داشته و توانایی رشد در اکثر مناطق دنیا را دارد.
استفاده از مسئله استنتاج قازی (FIS) برای پیش‌بینی مقدار انرژی کامپیوتری در برابر استرس و چرخه‌ای داده‌گیری

1. اسباب
2. مکانیک
3. شبکه عصبی
4. نظریه دیفاین

دصلاح‌پناهی رواشوندگان به توصیه‌های قازی و شبکه عصبی مصنوعی و کنترل آن در بسیاری از شاخه‌های علم و مهندسی مشابهت می‌نماید و با استفاده از آن در فناوری پیش‌بینی پیچیده‌تر و دارای عوامل متعددی می‌تواند به سادگی و با دقت مطلوب کار باشد.

کارتاپولوس (2000) انتخاب یک روش و رابطه مناسب برای مدل‌سازی یک سیستم، بستگی به میزان پیچیدگی آن سیستم و نیز میزان معنویتی که میزان داشته و شناخت ما از آن سیستم دارد، واقع است که انسان تماشای دارد یک سیستم، را با بیشترین دقیقه ممکن مدل‌سازی کرده، جنگل‌شان خانه‌ای به عنوان دانسته مناسب دارد. این نظریه نسبت به سیستم‌های منطق‌پذیر نماید (Dubois and Prade, 1980).

(4) Fuzzy Inference System
2- مواد و روش‌ها

3- بهبود نمونه و اندازه‌گیری خواص مکانیکی

برای انجام آزمایش، یکی از ارقام رایج درت در ایران (رقم 704) از موسسه تحقیقات بندر تهران (شکل 1) به منظور تهیه نمونه‌های بار رطوبت، تهیه شد. برای این داده‌ها درصد بر پایه خشک، ابتدا با استفاده از فرمول‌های زیر مقدار آب مقطع مورد نیاز محاسبه گردید.

(Mohsenin, 1986)

شکل 4- دانه‌های درت رقم 704

Figure 1: Corn varieties Sc704

\[
W_i \times \left(1 - \frac{M_i}{100 + M_i}\right) = W_i \times \left(1 - \frac{M_f}{100 + M_f}\right)
\]

\[
W_i - W_f = W_w
\]

کیفیتهای پلاستیکی کاملاً مسکوند به مدت سه روز در بیخال و بادامی 10 درجه سلسیوس نگهداری شد. نمونه‌ها به سمت شمال رطوبت یک‌پا و بسته شدند به منظور حفظ دما شدن نمونه‌ها با میزان دردشت، مدت حفظ نمونه‌ها به صورت کمیت قبل از شروع آزمایشات از بیخال خارج و در محیط آزمایشگاه قرار گرفت.

که وزن نمونه با رطوبت اولیه (g) W_i، وزن نمونه با رطوبت نهایی (g) W_f و رطوبت نهایی (g) M_i (Salcilik, 2009) درصد رطوبت اولیه بر پایه خشک، M_i درصد رطوبت نهایی بر پایه خشک این، M_f ابتدا آب مورد بازی به صورت تدریجی به دانه‌ها اضافه می‌شود تا در محیط آزمایشگاه قرار گرفت.
استفاده از میزان دستگاه فازی (FIS) برای پیش‌بینی تعداد انرژی گسخ‌گیکی محصولات و جغرافی‌گی دانه قرنطین

همچنین تغییر شکل مربوط به نقطه گسخ‌گی
از منحنی بر حسب میلی‌متر به دست‌آمده است. این
پیش‌بینی با بررسی معادله جند حملاتی درجه سه با
منحنی نیروتغییر شکل و سپس انتگرال‌گیری از
معادله مربوط به نقطه گسخ‌گی محاسبه شد.
جهانی از نسبت انرژی بر حجم نمونه‌های مورد
اموزش سه دست‌آمده. برای محاسبه ضریب
الاستیسیته‌های فازی، بر اساس انرژی هنتر برای
سطح مجدد از روش‌های دانه بین دو صفحه
می‌توان از استفاده‌های مشابه مانند MATLAB
دانسته‌ها و مقدار ضریب الاستیسیته‌های
دانسته‌ها از معادله (3) محاسبه گردید.

\[E = \frac{0.338 F(1 - \mu^2)}{D^{3/2}} \left[2K \left(\frac{1}{R_1} + \frac{1}{R'_1} \right) \right]^{1/3} \]

که:

ضریب الاستیسیته‌های فازی \(F \) (Pa)
مقدار \(E \)
نیروی فشاری از منحنی نیروتغییر شکل (N)
مقدار نیروتغییر شکل متساوی با نیروی \(D \)
حداقل شعاع انحنا، دانه در نقاط تماس (m)
حداقل فاکتور دو ابتدا به ویژگی هندسی صفحه
که بارگذاری (m)

برای اثر مدل پیش‌بینی با استفاده از
میزان سلیقه (FES)، محدودی رطوبتی
میزان سلیقه (SL) به عنوان
میزان متریال و ورودی و ضریب الاستیسیته (Ec)

\[F = \frac{1}{\text{مسطح}} \]

1- Fuzzy set theory

شده گزارندهای خواص مکانیکی دانه از دست
تحقیق از دستگاه بارگذاری فشاری تک محوری
سابخت شرکت سنتم استفاده شد. این
دستگاه دارای حسگر ۱ کیلوگرم نیرو و عامل
نیروی بارگذاری آن از نوع صفحه‌ای تخت بود که با
سرعت‌های ۱.۵ و ۷ میلی‌متر بر دقیقه به
سیستم یا در دو کیلوگرم و دانه‌ها را تحت بار
پیوسته قرار می‌داد. همواره منحنی نیروتغییر
شکل بر روی صفحه مانند مشاهده می‌شد. نیروی
پیش‌بینی بر حسب نیروی به‌طور عینی از بالاترین
 نقطه منحنی نیروتغییر شکل و پیش از افت
نگاه‌های نیرو به دست‌آمده.

ASAE, 1999
همچنین برای فازی کردن پارامترها از توابع اجرای شده زیر استفاده گرایید که این توابع به وسیله مقدار اندوزه گیری شده تعیین شدند.

برای فازی کردن این پارامترها از منغرهای لفظی، خیلی کم (VL)، کم (L)، متوسط (M)، خیلی زیاد (H) و زیاد (VH) استفاده شد.

همچنین به دلیل دقت بالایی از توابع عضویت متناسب شکل براز هموار و رودی و خروجی استفاده شد. واحدهای مورد استفاده برای پارامترها به ترتیب رطوبت (\(\%\)), سرعت بارگذاری (\(\text{mm.min}^{-1}\)), ضریب الاستیسیته (\(\text{Pa}\)), چگرگمی (\(\text{mm.min}^{-1}\)), و انرژی گرم‌رسانی (\(\text{J}.\text{cm}^{-3}\)) بودند.

شکل 2- ساختار سیستم خبره فازی

Fig.2. The structure of fuzzy expert system

\[
M_\text{c}(t_1) = \begin{cases} \text{0} & \text{0 : otherwise} \\ \{t_1: 8 \leq t_1 \leq 14\} & \text{otherwise} \end{cases}
\]

\[
S\text{_{L}}(t_2) = \begin{cases} \text{0} & \text{0 : otherwise} \\ \{t_2: 3 \leq t_2 \leq 7\} & \text{otherwise} \end{cases}
\]

\[
E\text{_r}(0_1) = \begin{cases} \text{0} & \text{0 : otherwise} \\ \{0_1: 85.5 \leq 0_1 \leq 358.5\} & \text{otherwise} \end{cases}
\]
\[\tau_0(o_2) = \begin{cases} 0.25 \leq o_2 \leq 0.48 \\
0 & \text{otherwise} \end{cases} \] (5)

\[E_R(o_2) = \begin{cases} 7.65 \leq o_3 \leq 155 \\
0 & \text{otherwise} \end{cases} \] (6)

\[\mu_{\tau_1}(i_2) = \begin{cases} 4 - i_2 & \text{if } 3 \leq i_2 \leq 4 \\
0 & \text{otherwise} \end{cases} \] (7)

\[\mu_{\tau_1}(i_2) = \{1/3 + 0.9/3.1 + \ldots + 0.1/3.9 + 0/4\} \] (8)

\[\mu_{\mu_1}(i_2) = \begin{cases} i_2 - 3 & \text{if } 4 \leq i_2 \leq 4 \\
i_2 & \text{if } 5 \leq i_2 \leq 6 \\
0 & \text{otherwise} \end{cases} \] (9)

\[\mu_{\mu_1}(i_2) = \{0/3 + 0.1/3.1 + \ldots + 1/4 + 0.9/4.1 + \ldots + 0.1/4.9 + 0/5\} \] (10)

\[\mu_{\mu_2}(i_2) = \begin{cases} i_2 - 4 & \text{if } 4 \leq i_2 \leq 5 \\
i_2 & \text{if } 5 \leq i_2 \leq 6 \\
0 & \text{otherwise} \end{cases} \] (11)

\[\mu_{\mu_2}(i_2) = \{0/4 + 0.1/4.1 + \ldots + 1/5 + 0.9/5.1 + \ldots + 0.1/5.9 + 0/6\} \] (12)

\[\mu_{\mu_3}(i_2) = \begin{cases} i_2 - 5 & \text{if } 5 \leq i_2 \leq 6 \\
i_2 & \text{if } 6 \leq i_2 \leq 7 \\
0 & \text{otherwise} \end{cases} \] (13)

\[\mu_{\mu_3}(i_2) = \{0/5 + 0.1/5.1 + \ldots + 1/6 + 0.9/6.1 + \ldots + 0.1/6.9 + 0/7\} \] (14)

\[\mu_{\nu_1}(i_2) = \begin{cases} i_2 - 6 & \text{if } 6 \leq i_2 \leq 7 \\
0 & \text{otherwise} \end{cases} \] (15)

\[\mu_{\nu_1}(i_2) = \{0/6 + 0.1/6.1 + \ldots + 0.9/6.9 + 1/7\} \] (16)
Figure 3: The membership functions of input variables

Figure 4: The membership functions of output variables
به دست آمده از آزمایش و دانش و تجربه نویسنده

نشان داده شده است این قواعد بر اساس داده‌های

<table>
<thead>
<tr>
<th>مقدارهای ورودی</th>
<th>سلسله‌های خروجی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E₁</td>
</tr>
<tr>
<td>قانون (1)</td>
<td>L</td>
</tr>
<tr>
<td>قانون (2)</td>
<td>L</td>
</tr>
<tr>
<td>قانون (18)</td>
<td>M</td>
</tr>
<tr>
<td>قانون (20)</td>
<td>VH</td>
</tr>
</tbody>
</table>

Table 1: Fuzzy Rules

در این تحقیق، 20 قانون توصیع داده شده، فعال شده و از استنتاج ماکسیمم-مینیمم ممداتی برای استنتاج مکانیزم و در غیرفارزی کردن به دلیل دقت بالا و جامعیت از روش مرکز ثقل Allah (Verdi, 2002)

\[
R^2 = \frac{\sum_{i=1}^{N}(\langle P_i \rangle - \mu)(\langle Q_i \rangle - \mu)^2}{\sum_{i=1}^{N}(\langle P_i \rangle - \mu)^2 \sum_{i=1}^{N}(\langle Q_i \rangle - \mu)^2}
\]

\[
\varepsilon = 100\% \sum_{i=1}^{N} \left| \frac{\langle Q_i \rangle - \langle P_i \rangle}{\langle Q_i \rangle} \right|
\]

\[
G, F = \sqrt{1 - \frac{\sum_{i=1}^{N}(P_i - \langle P \rangle)^2}{\sum_{i=1}^{N}(Q_i - \langle Q \rangle)^2}}
\]

در روابط فوق، N: تعداد نمونه، P: مقدار پیش‌بینی شده توسط مدل، Q: مقدار واقعی، P: میانگین مقدار پیش‌بینی شده توسط مدل، Q: میانگین مقدار واقعی می‌باشد (Jacovides, 1997).

1. Center of Gravity Defuzzifier

2-2 آزمایش عملکرد مدل

معیارهای مختلف برای بررسی مدل‌ها

پیش‌بینی وجود دارد که عموماً بر اساس اختلاف بین خروجی‌های پیش‌بینی شده و خروجی‌های
روش گام به گام (Stepwise) (M.c) اقدام به ارائه یک مدل رگرسیونی شد. منجر به شتاب رطوبت و سرعت بارگذاری به عنوان متغیرهای مستقل مدل در نظر گرفته شدند. در این تحقیق علاوه بر توسعه مدل فازی، جهت پیش‌بینی خواص مکانیکی دایره‌های ضخیمی استفاده می‌شود (E). چگونگی (E) و انرژی (T) با استفاده از نرم‌افزار SPSS گسخیگی (E) و R² =0.893

\[
E_f = -36.3 \text{M}_c + 11.5 S_L + 599.9
\]

R² =0.422

\[
T_o = 0.016 \text{M}_c - 0.007 S_L + 0.227
\]

R² =0.29

\[
E_r = 4.75 \text{M}_c - 1.7 S_L + 6836
\]

3- نتایج و بحث

نتایج خروجی مدل فازی در حالی به Surface شورت نیوده‌ها سه بعدی بر حسب پارامترهای ورودی و خروجی می‌باشد که پیامگیر تأثیر تغییرات پارامترهای ورودی بر خروجی مدل فازی است. شکل (۵) نشان‌دهنده اثر سرعت بارگذاری و رطوبت بر انرژی گسخیگی است. همان‌طور که از نمودار پیدا می‌شود کمترین مقدار انرژی گسخیگی در محدوده ۸.۷ تا ۸.۴ درصد سرعت بارگذاری و رطوبت و دستگاه می‌باشد. سپس بارگذاری مقدار بارگذاری مشابه آنتزی گسخیگی در دستگاه و بیشترین مقدار انرژی گسخیگی در سرعت بارگذاری ۴ میلی‌متر بر دقیقه و رطوبت ۱۴ درصد بدست می‌آید.
شکل ۶ اثر سرعت بارگذاری و رطوبت بر انرژی فاسیگی‌گسیخته:

Figure 6: Effect of loading speed and moisture content on Toughness.

شکل ۵ اثر سرعت بارگذاری و رطوبت بر انرژی فاسیگی‌گسیخته:

Figure 5: Effect of loading speed and moisture content on rupture energy.

گسیختگی میان‌بند و این مؤید عدم تأثیر اندازه دانه در میزان چروک‌گنی خواهد بود.
نیاز دارد نشان دهنده اثر سرعت بارگذاری و رطوبت بر ضریب الاستیسیته است. همانطور که از نمودار پیدا می‌گردد، با افزایش سرعت بارگذاری تا ۵ میلی‌متر در دقیقه، روند کاهشی، جهت به باند افزایش سرعت بارگذاری محوری تقریباً افزایش داشته است، سپس مجدداً روند کاهشی داشته است. همچنین با افزایش رطوبت مقدار چروک‌گنی نیز روندی تقریباً افزایشی داشته است. در حالتی که با افزایش رطوبت مقدار ضریب الاستیسیته روندی کاهشی داشته است. طوریکه بیشترین مقدار ضریب الاستیسیته در سرعت بارگذاری ۰ تا ۰.۲ میلی‌متر در دقیقه و رطوبت ۸ گسیختگی میان‌بند و این مؤید عدم تأثیر اندازه دانه در میزان چروک‌گنی خواهد بود.

شکل ۵ نشان دهنده اثر سرعت بارگذاری و رطوبت بر انرژی فاسیگی‌گسیخته:

Figure 5: Effect of loading speed and moisture content on rupture energy.

شکل ۶ نشان دهنده اثر سرعت بارگذاری و رطوبت بر انرژی فاسیگی‌گسیخته:

Figure 6: Effect of loading speed and moisture content on Toughness.
Figure 7: Effect of loading speed and moisture content on Modulus of Elasticity.
Figure 8: Correlation between measured and predicted values of Modulus of Elasticity

\[R^2 = 0.9833 \]

Figure 9: Correlation between measured and predicted values of Modulus of Toughness

\[R^2 = 0.7717 \]
نتایج گیری

با توجه به اینکه مقدار انرژی گسیختگی در محدوده سرعت بارگذاری ۱/۵ تا ۱ میلی‌متر بر دقیقه کمترین مقدار را داشته و با افزایش سرعت بارگذاری تا ۱/۵ میلی‌متر بر دقیقه روی دادن انرژی افزایشی و سپس مجدداً کاهش پیدا می‌کند، بنابراین لازم است سرعت‌های بارگذاری بالا ترین تیزی مورد ارزیابی قرار گیرد. با توجه به نتایج به دست آمده می‌توان بیان کرد که با افزایش سرعت بارگذاری در هر دو پارامتر انرژی گسیختگی و جوهرگونی افزایش در حالتی که ضریب الاستیسپسیون کاهش پیدا می‌کند، مدل‌های فازی به خاطر اینکه در آنها رابطه بین متغیرهای ورودی و خروجی می‌تواند به وسیله قواعدی که بر روش‌های پیش‌بینی خواص مکانیکی محصولات کشاورزی از جمله داشته معرفی نمود.

اساس متفاوتی زمانی نوشته شده، توصیف گردند.

ساختار ساده و قدرتنمی‌ی را داشته و در مقایسه با دیگر شیوه‌های مدل‌سازی پیش‌بینی کننده (آنالیز رگرسیونی کلاسیک) برتری دارد. در این مقاله، اعتبار عملکرد مدل ارائه شده بر اساس معیارهای ارزیابی به اثبات رسید، به‌طوری که برای تمامی پارامترها، مقدار خطا نسبی پیش‌بینی شده کمتر از حد قابل قبول (10%) بود. با توجه به نتایج حاصل از این تحقیق، از جمله نمایش گرایشی روند تغییرات صفات انرژی کریو شده تا نمایش تأثیر عوامل مختلف، می‌توان مدل فازی را به عنوان یکی از روش‌های پیش‌بینی خواص مکانیکی محصولات کشاورزی از جمله داشته معرفی نمود.

Fuzzy Inference System (FIS) to Predict Rupture Energy, Modulus of Elasticity and Toughness of Zea Maize

A. Golmohammadi 1, R. Sedghi 2

1 Assist.Prof. of Agricultural Machinery EngineeringDept. Of Agricultural Machinery, University of Mohaghegh Ardabili, Ardabil.

2 Former graduate student, Department of Agricultural Machinery, Faculty of Agricultural Technology and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran.

Email: agolmohammadi42@yahoo.com

Received: 2014-01-15 Accepted: 2014-06-07

Abstract

Like any other grains, mechanical properties of corn are necessary for designing, transporting, handling, drying and milling of grains. In this study, some mechanical properties of corn grains, including modulus of elasticity, toughness and rupture energy of corn Sc704, cultivar were studied under moisture content factor at 4 levels (8, 10, 12 and 14% dry basis) and loading speed at 5 levels (3, 4, 5, 6 and 7 mm/min). A sophisticated intelligent model, based on Mamdani fuzzy inference system, was developed to predict the mechanical properties of corn. The fuzzy model consists of 20 rules. In this investigation, the Mamdani Max-Min inference was used for deducing the mechanism (composition of fuzzy rules with input); also the center of gravity defuzzifier method was used for defuzzification (conversion of the final output of the system into a classic number). The validity of the presented model was achieved by numerical error criterion based on empirical data. The prediction results of models using fuzzy values with measured values showed a close. Predicted results using fuzzy model, showed very close values with measured values. So that, the relative mean error of the predicted and measured values using the fuzzy model for modulus of elasticity, toughness and rupture’s energy, were 5.2, 7.8 and 4.6% respectively. The comparison between the fuzzy model and regression model showed that the mean relative error in regression model is greater than the FIS model.

Key words: Coefficient of elasticity, Toughness, Rupture energy, Corn, Fuzzy Inference System
استفاده از میکس استتلاج نازی (FIS) برای پیش‌بینی مقادیر وزنی کسب‌وکاری ضریب امتیازی و جرم‌های داله‌زی